Announcement

Collapse
No announcement yet.

Transporteris M113 ir jo modifikacijos

Collapse
X
 
  • Filtras
  • Laikas
  • Rodyti
Ištrinti viską
Naujas pranešimas



  • M113 robotinė nuotolinio valdymo platforma

    Komentuoti


    •  

      Komentuoti


      • The twin 40mm self-propelled antiaircraft gun XM166 with the M4A1 mount on the cargo carrier M548

        Komentuoti


        • SLUFAE Prototype Minefield Breaching System





          Komentuoti


          • An M474 with a Pershing 1 missile passes President John F Kennedy during his inauguration parade (20th January, 1961)






















            Komentuoti


            • Allison Transmission to provide X200-4A propulsion solution for US Army M113 tracked APC

              Posted On Friday, 06 December 2019 14:52

              Allison Transmission, the largest global manufacturer of medium- and heavy-duty fully automatic transmissions for commercial and military vehicles, is proud to partner with the U.S. Army’s Tank-automotive & Armaments Command (TACOM) to provide the Allison X200-4A propulsion solution for the M113 Armored Personnel Carrier family of vehicle



              U.S. Army medics with the 68th Armor Regiment, 3rd Armored Brigade Combat Team, 4th Infantry Division maneuver an M113 Armored Personnel Carrier toward a Role 1 medical tent area in Amman, Jordan, Aug. 27, 2019, during Exercise Eager Lion 2019. (Picture source U.S. DoD)

              The upgraded Allison X200 provides superior propulsion for the United States Army’s tracked vehicles. The X200-4A is a cross-drive transmission featuring a hydraulic torque converter in combination with a range planetary package for propulsion, differential steering and integral hydraulic brakes.

              The M113 remains the Army’s single largest armored vehicle fleet with nearly 5,000 vehicles across the Active and Reserve Components. These vehicles provide armored brigades critical capability in medical, combat engineering, command and control, and indirect fire. Allison Transmission anticipates providing the Army with more than 300 transmissions through 2021 to support the Army’s mission of improving combat readiness

              Komentuoti




              •  
                Last edited by Jonas; 11th December 2019, 20:46.

                Komentuoti









                • Komentuoti


                  • World Defence News: FEINDEF 2019: TRIUM-DRS unveils Cerberus




                     

                    Komentuoti


                    • Toks bokštelis, kad galėjo kokį nors 57 mm Bofors dėti O M113 su juo atrodo kaip tankas Kažin, kada baigsis tie eksperimentai su bokšteliais ant M113?

                      Komentuoti


                      • M113 LAB










                        Komentuoti


                        • Alternatyvių šarvų m113 pagaminta 3 prototipai

                          The pressure placed on armored vehicle designers to keep down weight without compromising protection or performance is a driving force behind many AFV design choices. Much focus has been placed by designers on moving away from traditional steel armor to aluminium or even titanium and ceramics as an alternative. Whilst these can lower the weight of the vehicle without reducing protection, they often come with a very steep price tag.
                          One idea from the early 1980’s was the possibility of using a new generation of fiber-reinforced plastics to form the hull of armored fighting vehicles.


                          The M113 APC is well known for being protected by welded 5083 Aluminium armor. Little more than a basic armored box on tracks, the machine proved itself to be a reliable and adaptable platform for a variety of roles, albeit thinly armored with protection from just shell splinters and small arms fire. In the initial Statement of Work (SoW), the requirements for the design were relatively straightforward. The test vehicles were to feature a composite or mostly composite material hull using E-glass, and an armor configuration with aluminium covered ceramic tiles bonded to the GRP body.





                          Martin-Marietta selected a slightly different type of composite for their design: glass reinforced plastic (GRP). The entire upper hull was made in one piece from GRP consisting of epoxy sealed woven E-glass joined to the bottom half of an M113 hull which was left as welded aluminium. Instead of using an M113 as a donor and cutting this piece off for their work, Martin Marietta instead made their own lower M113 half from 5083 Aluminium, cutting and welding the metal to exactly match those parts of the M113A1.


                          Inside the vehicle, a ¼” (6.35 mm) thick aluminium bulkhead, identical to that of an M113A1, was fabricated and welded to the new lower hull at the bottom and the small horizontal plate with the driver’s hatch on the top. The aluminium roof beam was also added. This method provided a degree of rigidity to the design.


                          Armor for this design was to come from the addition of external Alumina ceramic tiles formed in 4” (101.6 mm) square tiles covering the front, sides and rear, which were covered and protected from damage by thin aluminium sheets. The total side thickness of this structure was not less than 0.75” (19 mm) made from 36 plies of 5×4 woven roving E-glass in epoxy resin. The roof, which had no ceramic tile ballistic protection, was thicker; made from 54 plies of 5×4 woven roving e-glass coming to a thickness 1.25” (31.75 mm) and was formed from two pieces. The first was the same thickness as the rest of the upper hull being uniformly thick with the sides. The second was an additional layer 0.5” (12.7 mm) thick bonded to the 0.75” (19 mm) thick roof to bring it up to 1.25” (31.75 mm).








                          Repair ease was considered during the planning phase with the categories of damage from perforating or semi-perforating fragments categorised along with ideas for different levels of repair. A field repair to a single point of damage, for example, would have involved a metal cup being inserted through the hole and bolted to the inside. Given the complexity of the interior fittings and layout, even the simplest repair would be complicated and the projection of elements into the interior could prevent parts from fitting again. That problem remained unsolved for the purposes of this study, but the ideas of how to fix at different levels were carefully considered and noteworthy. Even the smallest repair could take between 2 and 24 hours or longer for more serious work. Damage to the aluminium near to the GRP was even more complex. Although it could simply be welded, the heat transferred to the GRP caused serious damage to the material which would mean that should the aluminium lower half require welding it might be necessary to remove the entire upper half of the vehicle to do it or to use efficient heat sinks.


                          One of the major drivers towards composite hulls was to save weight. The existing M113A1 hull was used as a baseline for the studies. The Owens Corning study took the weight of the M113A2 ‘Carrier Personnel Full Track Armored’ with the bare essential components such as engine, transmission, hatches, ramp, and final drive fitted to weigh 12,910 lbs (5,856kg). Their composite version was 12,710 lbs (5,765 kg). This meant they achieved 200 lb (91 kg) saving with a marginal increase in protection. As for just the bare stripped hull, the savings were non-existent, going from 7,540lbs (3,420kg) for the bare aluminium hull to 7,600 lbs (3,447 kg) for the composite version, an extra 60 lbs (27.2 kg). This apparent discrepancy may be due to the weight of the ramp which was not replaced with a composite version.
                          The Martin Marietta work using their own ‘M113A1’, which was compared to 1973 Army data for the original vehicle which yielded 3,300 lbs (1,500 kg) for the original vehicle’s aluminium structure which was being retained. The original armored parts of the M113A1 weighed 9,622 lbs (4,364.5 kg) on their own, but the GRP body though only weighed only 2,203 lbs (999 kg), the ballistic tiles added another 843 lbs (382 kg), and the necessary bolts for fitting the GRP body to the aluminium lower another 139 lbs (63 kg). All complete, therefore, the Martin Marietta vehicle with a complete lower aluminium section and GRP upper body weighed just 6,490 lbs (2,944.8 kg).



                          Ignoring weight issues, there was a more fundamental problem with the composite body M113. Just as was found during the same tests with the composite body for the M2 Bradley, the new plastic hulls exhibited significant longitudinal twisting during testing. In comparative testing though, the small M113 came out better than the larger M2 Bradley in this regard. When fitted with engine, hatches and equipment, etc. it simply showed less twisting along the longitudinal axis. Both designs showed themselves equally good at absorbing vibrations, with the plastic hull performing better than the metal versions.
                          The production of a composite hull for the M113 was relatively simple and straightforward. Most of the data needed was already known and the costs were mainly relating to finalisation of an official design based on updated requirements for loads and environmental factors such as protection against nuclear and chemical or biological weapons. All told, this would be US$9.5m (1983), relatively cheap for a military project that enhanced the existing M113’s. The composite hull saved weight, had better thermal properties than the metal-hulled vehicle and maintained the existing level of ballistic protection. In a year of trials by the US Marine Corps, no problems were found with the vehicle’s structure or corrosion and subsequently, it was recommended to proceed with work on the construction of a composite hull for a high-speed amphibious vehicle. Conclusion

                          The idea of replacing the aluminium body of the M113 with GRP was proven to be viable and also to produce some benefits. This project was to go on and more GRP hulled vehicles followed. Composite materials offered both improved weight and some other matters without abandoning ballistic protection, but the materials are not without their own complexity. From manufacturing to repair, the costs and problems associated with a GRP bodied vehicle were not solved by this vehicle or even by later trials. The location of either the Owens Corning M113s or the Martin Marietta vehicles is unknown. The lessons learnt during these GRP trials continue to offer designers with a useful way to provide protection for vehicles with a weight reduction over traditional armors. Whether this expensive and complicated technology will ever be fielded in a mass production vehicle is doubtful



                          Komentuoti


                          • Turkai modernizuos savo ACV-15 PKM.
                            https://www.defenceturk.net/aselsan-...-sozlesme-imza






                             

                            Komentuoti


                            • Spanish Army plans to convert M113s into Spike launchers

                              https://www.janes.com/article/93496/...pike-launchers

                              Komentuoti


                              • The Royal Canadian Dragoons


















                                Last edited by Jonas; 11th January 2020, 17:53.

                                Komentuoti

                                Vykdoma...
                                X